Competition


The main event of the ReSMiQ innovation day is a competition where undergraduate and graduate students will demonstrate their scientific and technical expertise through the presentation af a live experiment. The competition will play in two parts.

Part 1: My project in 300·106 μsEach candidate will introduce their project via a 5 minutes oral presentation
Part 2: My project in action – Live demonstration of a microsystem.

Featured projects
(click on the title to preview a full description)

Undergraduate and college level

P1 – Unobstrusive and wireless electronic sphygmomanometer for BP monitoring
by Nicolas Juteau (B.Sc.), Université Laval

Graduate level

P2 – A GaN-based Novel Wireless Monitoring System for High-Temperature Applications
by Ahmad Hassan (Ph.D.), Polytechnique Montréal

P3 – Ultrasound technique in respiratory monitoring
by Amirhossein Shashahani (Ph.D.), McGill University

P4 – Convertisseur DC/DC
by Anita Ebrahemyan Masihi (M.Sc.), Université Laval

P5 – Circuit de lecture matricielle de photodiodes à avalanche monophotonique en CMOS 65 nm pour la tomographie d’émission par positrons
by Frédéric Nolet (Ph.D.), Université de Sherbrooke

P6 – A DWT-Based Digital Neural Signal Decoder with Automatic Spike Detection, Compression & Clustering for Closed-Loop Optogenetics in 0.13-μm CMOS
by Gabriel Gagnon-Turcotte (Ph.D.), Université Laval

P7 – Wireless Optoelectronic Interface Enabling Brain Fiber Photometry in Live Animal Models
by Mehdi Noormohammadi Khiarak (Ph.D.), Université Laval

P8 – Ultra low power Dual-Band Radio Frequency Energy Harvesting Interface for Wearable Devices
by Seyed Mohammad Noghabaei (Ph.D.), Polytechnique Montréal


P1 – Unobstrusive and wireless electronic sphygmomanometer for BP monitoring
by Nicolas Juteau (B.Sc.), Université Laval

Le projet concerne la conception d’un dispositif compact et sans-fil qui permet la mesure de la pression artérielle rendant son utilisation idéale dans un contexte de surveillance ambulatoire de pression artérielle (MAPA) échelonée sur une longue période de temps. L’ajout de la connectivité sans-fil ouvre la voie à l’exploration d’une gamme plus large de traitements du signal puisque les données brutes peuvent être envoyées et traitées en temps réel à un appareil à proximité plutôt que sur le dispositif lui-même. Cela permet la diminution du coût et de la complexité du dispositif en délégant le traitement du signal à un appareil tier dont la puissance de calcul est supérieure et, par le fait même, rend possible l’exploration d’algorithmes plus sophistiqués afin de produire une estimation plus fiable et plus spécifique au patient de la pression systolique et diastolique.

P2 – A GaN-based Novel Wireless Monitoring System for High-Temperature Applications
by Ahmad Hassan (Ph.D.), Polytechnique Montréal

A novel fully-integrated data transmission system based on GaN (gallium nitride)HEMT (high-electron-mobility transistor) devices is presented. The proposed system targets high-temperature (HT) applications especially those involving pressure and temperature sensors for aerospace in which the environment temperature exceeds 400C. The presented system includes a front-end block to amplify a low-voltage analog sensed signal (gain = 40), followed by a novel analog-to-digital converter driving a modulator exploiting the Load-shift Keying technique. An oscillation frequency of 1 MHz is used to ensure a robust wireless transmission through metallic-based barriers. To retrieve the data, a demodulator based on digital circuits is proposed. A 1V amplitude difference can be detected
between a high-level (data-on) and a low-level (data-off) of the received modulated signal. Two high supply voltage levels (+14V and -14V) are required to operate the circuits.

P3 – Ultrasound technique in respiratory monitoring
by Amirhossein Shashahani (Ph.D.), McGill University

This work introduces a novel respiratory detection system based on diaphragm wall motion tracking using an embedded ultrasound sensory system. We assessed the utility and accuracy of this method in evaluating the function of the diaphragm and its contribution to respiratory workload. The developed system is able to monitor the diaphragm wall activity when the sensor is placed in the zone of apposition (ZOA). The system generates pulsed ultrasound waves at 2.2 MHz and amplifies reflected echoes. An added benefit of this system is that due to its design, the respiratory signal is less subject to motion artefacts in contrast to other conventional methods. Promising results were obtained from six subjects performing six tests per subject with an average respiration detection sensitivity and specificity of 84% and 93%, respectively. Measurements were compared to a gold standard commercial spirometer. In this study, superiority of this design compared to other conventional methods such as inertial and photoplethysmography (PPG) sensors has been approved.

P4 – Convertisseur DC/DC
by Anita Ebrahemyan Masihi (M.Sc.), Université Laval

P5 – Circuit de lecture matricielle de photodiodes à avalanche monophotonique en CMOS 65 nm pour la tomographie d’émission par positrons
by Frédéric Nolet (Ph.D.), Université de Sherbrooke

Le Groupe de Recherche en Appareillage Médical de Sherbrooke (GRAMS) développe de nouveaux photodétecteurs intégrés en 3D basés sur des photodiodes à avalanche monophotoniques (SPAD). L’objectif de ces nouveaux photodétecteurs est de détecter des photons uniques avec une précision temporelle de 10 ps largeur à mi-hauteur (FWHM). Cette caractéristique du photodétecteur permet d’intégrer des mesures de temps de vol (TDV) des photons dans de nombreuses applications. Le GRAMS développe également des scanners précliniques de tomographie d’émission par positrons (TEP), une modalité d’imagerie médicale qui bénéficierait de la mesure du TDV. Un circuit intégré de lecture a été développé en technologie CMOS 65 nm pour lire la matrice de photodétecteurs. En plus de circuits de lecture individuel précis en temps, un système de traitement numérique a été intégré au circuit pour combiner l’information de chaque photodétecteur. Ceci permet d’améliorer les performances temporelles et réduire la quantité d’information à transmettre. Le circuit possède une précision temporelle de 18 ps rms et l’algorithme de traitement numérique permet d’augmenter le taux de transmission d’événements d’un facteur 256.

P6 – A DWT-Based Digital Neural Signal Decoder with Automatic Spike Detection, Compression & Clustering for Closed-Loop Optogenetics in 0.13-μm CMOS
by Gabriel Gagnon-Turcotte (Ph.D.), Université Laval

With the rise of revolutionary optogenetics in neuroscience methods, it is now possible to use light guided by implantable optical fibers to study the microcircuits inside the intact brain. This new ground breaking approach makes it possible to selectively activate specific neurons in the cortex of transgenic animals to observe their role in vast biological networks. To push further the scope of this powerful approach, we aim to demonstrate the first wireless brain machine interface providing a closed-loop optogenetic connection with the brain of live animal models (see Fig. 1). We have recently demonstrated the first mixed-signal system-on-chip (MS-SoC) to provide simultaneous neural recording and optogenetic stimulation on multiple channels at the IEEE ISSCC’18, and later in the IEEE JSSC. We also demonstrated a wireless optogenetic system capable of compressing several electrophysiological signals in parallel to increase the resolution and the autonomy. Building on these advances, we designed and fabricated the first digital neural signal processor (DNSP) to detect, compress, and classify the neural signals to perform reliable closed-loop optogenetic feedback. Both the MS-SoC and the DNSP are integrated inside a tiny (~ 1cm²) and chronically implantable system.

P7 – Wireless Optoelectronic Interface Enabling Brain Fiber Photometry in Live Animal Models
by Mehdi Noormohammadi Khiarak (Ph.D.), Université Laval

Fluorescence biophotometry measurements require wide dynamic range (DR) and high-sensitivity laboratory apparatus. Indeed, it is often very challenging to accurately resolve the small fluorescence variations in presence of noise and high background tissue autofluorescence. There is a great need for smaller detectors combining high linearity, high sensitivity, and high-energy efficiency. This paper presents a new biophotometry sensor merging two individual building blocks, namely a low-noise sensing front-end and a 2nd order continuous-time ΣΔ modulator (CTSDM), into a single module for enabling high-sensitivity and high energy-efficiency photo-sensing. In particular, a differential CMOS photodetector associated with a differential capacitive transimpedance amplifier-based sensing front-end is merged with an incremental 2nd order 1-bit CTSDM to achieve a large DR, low hardware complexity, and high-energy efficiency. The sensor leverages a hardware sharing strategy to simplify the implementation and reduce power consumption. The proposed CMOS biosensor is integrated within a miniature wireless head mountable prototype for enabling biophotometry with a single implantable fiber in the brain of live mice. The proposed biophotometry sensor is implemented in a 0.18-µm CMOS technology, consuming 41 µW from a 1.8-V supply voltage, while achieving a peak dynamic range of 86 dB over a 50-Hz input bandwidth, a sensitivity of 24 mV/nW, and a minimum detectable current of 2.46-pArms at a 20-kS/s sampling rate.

P8 – Ultra low power Dual-Band Radio Frequency Energy Harvesting Interface for Wearable Devices
by Seyed Mohammad Noghabaei (Ph.D.), Polytechnique Montréal

An ultra-low power and fully integrated RF energy harvesting system, in 130 nm CMOS technology is presented. The system uses dual ISM bands (915 MHz and 1850 MHz) as inputs with sensitivity of -30 dBm. We demonstrate a new RF-DC power converter with both dynamic and static self-compensating schemes to reduce the threshold voltage of rectifying devices. The proposed scheme overcomes challenges for achieving high power conversion efficiency (PCE) at ultra-low input power. Moreover, a power management unit (PMU) is designed as interface between transducer and load to combine powers, match voltage and current of the RF front end and load. It also minimizes the power consumption. The proposed harvester with new power summation network achieves maximum PCE of 43 % at -18 dBm (assuming two frequency bands are available). As a significant advantage, the proposed dual-band RF-EH design increases system availability performing harvesting from two different frequencies.

 

Welcome to Polytechnique Montréal
for RID2018 and the 7th Experimental Demonstration Competition.
Hosted by

Sponsors